with Hierarchical Level of Detail

Carsten Benthin, Christoph Peters

intel.

p

intel.

Q
£
H
'
Q
a'el
S
>
+
>
Q@ 5
o =
- E
@) 2
o — ()]
S (@]
Q to a
& s Py
@) =
L =
U,
Q
&
Q
S
)
o
LL

Nanite

https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf

Nanite in a Nutshell

" Groups triangles into geometry clusters (< 128 triangles)

* Lossy compression

intel.

Nanite in a Nutshell

" Groups triangles into geometry clusters (< 128 triangles)
e Lossy compression

» Cluster-based hierarchical LOD
* Merge and split = DAG (Directed-Acyclic-Graph)

- & - =
r Ty

intel

Nanite in a Nutshell

= Rendering clusters
 Select LOD clusters by (view dependent) cut through DAG
* Reduce #clusters in subset by frustum + occlusion culling
 Decompress and (SW-)rasterize triangles in remaining clusters

e ~20M triangles/frame

Seee %

intel

Issue

= Cluster-based hierarchical LOD + HW-accelerated ray tracing?
e TLAS/BLAS API restriction

intel

Issue

= Cluster-based hierarchical LOD + HW-accelerated ray tracing?
e TLAS/BLAS API restriction

=" OPTION 1: No per-frame LOD, put fixed geometry resolution into BLAS
* GPU memory vs. BLAS memory footprint (less dense per triangle than cluster)
* Scene updates

* Geometry aliasing

intel

Issue

= Cluster-based hierarchical LOD + HW-accelerated ray tracing?
e TLAS/BLAS API restriction

= OPTION 2: Apply LOD per frame, put decompressed triangles into BLAS

* Mesh topology changes = full BVH rebuild
* BVH rebuild perf too slow, e.g. 400 MTriangles/s for 20M triangles =» 50ms ®

intel

8

Issue

= Cluster-based hierarchical LOD + HW-accelerated ray tracing?

@

= OPTION 2: Apply LOD per frame, put decompressed triangles into BLAS

* Mesh topology changes = full BVH rebuild
* BVH rebuild perf too slow, e.g. 400 MTriangles/s for 20M triangles =» 50ms ®

intel

Our Approach

" Preprocessing phase (CPU)
= Per-frame phase (GPU)

intel

Preprocessing Phase (CPU)

—

" |nitial cluster generation
_Quite similar to Nanite but more

" Creating a hierarchy over clusters])
tailored towards ray tracing

= Lossy compression of cluster data

=

intel =

Cluster Generation

= Convert triangles into quads (triangle pairs)
= Build BVH over all quads

= Extract clusters by top-down traversal
e Subtree has < 128 quads (256 triangles)

e Reduces cluster’s AABB overlap

intel

Cluster Hierarchy

= SAH-based cluster merging

* Iterative bottom-up BVH builder (PLOC)

* Select pairs with minimal merged AABB area
= Simplify geometry in merged cluster

* Preserving boundary edges

" Merging would create binary tree but...

intel

Cluster Merges Can Fail

" Too many boundary edges

=» Simplification fails (#triangles after simplification too high)
=>» Split merged cluster

=»Binary DAG

\\! “" 2 v \\l "’ W/
=" DAG can have multiple roots ‘ ‘

(»\ V " \\“’ d;; " \\“’ “;ﬁ

1& (\\N \2 '(“» [/ ‘ ““
o » e |

“4
x\ﬂ \'lu\ /I/l\ 4 \ -:\, \/)» _ 'I‘M M\\\' \"?’" ﬂ""‘\\\ /l\"l\\'\"\/‘)'

intel

Lossy Compression of Cluster Data

= Cluster contains a lossy compressed quad mesh

* 16bit vertex quantization with respect to object’s bounding box
e 8 bit vertex indices

LS

T4

= 4-6 bytes per triangle o S

DT [
BTN
Y

" 165-222 MTriangles / GB of memory

= Watertight within objects but not across

2 7"‘
N
VAR,

D
N

L
y

V]

A BYS
7 AN
A AAAY

i

]
)

ZSNZVA
AN

\/

N AVAVAAVGAVATA
PSS Pt
/
K]
7

N
2RV
PINA

Z)

\/
\ANE
%
I

VN

S\

Al
A
N

»AZ! SN
=)
aw

O

ANANAL

N
WA

15

Per-Frame Phase (GPU)

= | OD cluster selection

" Cluster decompression and per cluster BVH build

" Cluster BVH fusing

intel.

LOD Cluster Selection

" DAG top-down traversal starting from roots

" For each traversal step
* Project cluster’s AABB on image plane
 Stop and select cluster if diagonal projection’s 2D AABB < threshold
" Clusters outside view frustum
e Cannot cull, need them for secondary rays

* Assigned coarse LOD level

intel v

Cluster Decompression and Per Cluster BVH Build

= Target ray tracing HW (Intel Arc Series)
* 6-wide quantized BVH = QBVH6 (64 bytes), quad/triangle-pair per leaf (64 bytes)

= QBVHS6 is ~5x larger than lossy compressed cluster

intel =

Cluster Decompression and Per Cluster BVH Build

=" Decompresses cluster (< 128 quads) and directly convert into a QBVH6

* Load cluster =» decompress into SLM =» convert to QBVH6 =2 write out to memory

* Omits unnecessary and memory bandwidth heavy intermediate steps

v

/

intel

Cluster BVH Fusing

Cluster BVH Fusing

= Simply build top-level QBVH6 over selected cluster QBVH6s
e Result is single QBVH6 (BLAS)

= Full build makes adding/removing new clusters trivial (e.g. streaming)

=,

A

intel =

Results

" Intel Arc A770, 16 GB memory
=" Modified Embree 4.0

* Bypasses DXR/Vulkan API restrictions, e.g. compressed clusters as geometry type

* Ray queries

intel =

Tessellation/Cluster

Micro-Poly HW RT

intel =

LOD

Micro-Poly HW RT

intel =

Path Tracing + Denoising

Render Time: 29,3589 ms -> 34,07 fps
Total Time per Frame: 52,4316 ms -> 19,87 fps
SPP: 1

Per Frame Overhead: 7.4987 ms

LOD Selection Time: 2.2535 ms

24 LOD Threshold
Dencising Time: 9.8918 ms |
Root Clusters: 16647
Active Clusters / Frame: 103774 {out of 1194021)
Quads / Frame: 7921388 (out of 98665836)
Triangles / Frame: 15842776 (out of 197331672
64-bytes QBVHE Blocks / Frame: 9655844 (out of 1447072008

S

intel.

25

Cost

5

Per Frame

o .\

Thai Rungholt Landscape

Triangles 200 M 100 M 132 M
Triangles Per Frame 16 M 40 M 21 M
LOD Selection 1.7 ms 0.9 ms 1.2 ms
Decomp + Cluster QBVH6 2.4 ms 5.9ms 2.6 ms
Fusing Cluster QBVH6s 1.6 ms 2.3 ms 2.0 ms
Total 5.7 ms 9.0 ms 5.8 ms

QBVH6 Build Perf 4.0 GTriangles/s 4.8 GTriangles/s 4.5 GTriangles/s

intel =

Cost

5

Per Frame

o .\

Thai Rungholt Landscape

Triangles 200 M 100 M 132 M
Triangles Per Frame 16 M 40 M 21 M
LOD Selection 1.7 ms 0.9 ms 1.2 ms
Decomp + Cluster QBVH6 2.4 ms 5.9ms 2.6 ms
Fusing Cluster QBVH6s 1.6 ms 2.3 ms 2.0 ms
Total 5.7 ms 9.0 ms 5.8 ms

QBVH6 Build Perf 4.0 GTriangles/s 4.8 GTriangles/s 4.5 GTriangles/s

intel ~

¢

5;‘7

Per Frame Cos

% \

Thai Rungholt Landscape

Triangles 200 M 100 M 132 M
Triangles Per Frame 16 M 40 M 21 M
LOD Selection 1.7 ms 0.9 ms 1.2 ms
Decomp + Cluster QBVH6 2.4 ms 5.9ms 2.6 ms
Fusing Cluster QBVH6s 1.6 ms 2.3 ms 2.0 ms
Total 5.7 ms 9.0 ms 5.8 ms

QBVH6 Build Perf 4.0 GTriangles/s 4.8 GTriangles/s 4.5 GTriangles/s

Build performance for QBVH6 with cluster hierarchy > 10x vs. QBVH6 over quads

intel.

28

Full Dynamic Content

Fully Dynamic Content
52K Patches
4 SPP

Per-Frame

- Patch LOD selection
- Patch Tessellation

- Cluster Conversion

intel =

Conclusion

= Cluster-based BLAS construction extremely fast

intel =

Conclusion

= Cluster-based BLAS construction extremely fast

= Getting close to real-time hierarchical LOD with HW-accelerated RT

intel

Conclusion

= Cluster-based BLAS construction extremely fast
= Getting close to real-time hierarchical LOD with HW-accelerated RT

" Lossy compressed cluster/mesh should be a new primitive type

intel

Future Work

=" Need more dense representations
* Lossy compressed clusters (delta encoding + prediction)

* HW-supported geometry representation inside the BLAS

» Need a standardized lossy compressed cluster/mesh primitive type
e DXR/Vulkan API support

intel =

Questions?

\ 4 ﬂif.l‘
Full Video

intel =

https://www.intel.com/content/www/us/en/developer/articles/technical/real-time-ray-tracing-of-micro-poly-geometry.html

	Slide 1: Real-Time Ray Tracing of Micro-Poly Geometry with Hierarchical Level of Detail
	Slide 2: Nanite: Extreme Geometric Complexity in Real-Time
	Slide 3: Nanite in a Nutshell
	Slide 4: Nanite in a Nutshell
	Slide 5: Nanite in a Nutshell
	Slide 6: Issue
	Slide 7: Issue
	Slide 8: Issue
	Slide 9: Issue
	Slide 10: Our Approach
	Slide 11: Preprocessing Phase (CPU)
	Slide 12: Cluster Generation
	Slide 13: Cluster Hierarchy
	Slide 14: Cluster Merges Can Fail
	Slide 15: Lossy Compression of Cluster Data
	Slide 16: Per-Frame Phase (GPU)
	Slide 17: LOD Cluster Selection
	Slide 18: Cluster Decompression and Per Cluster BVH Build
	Slide 19: Cluster Decompression and Per Cluster BVH Build
	Slide 20: Cluster BVH Fusing
	Slide 21: Cluster BVH Fusing
	Slide 22: Results
	Slide 23: Tessellation/Cluster
	Slide 24: LOD
	Slide 25: Path Tracing + Denoising
	Slide 26: Per Frame Cost
	Slide 27: Per Frame Cost
	Slide 28: Per Frame Cost
	Slide 29: Full Dynamic Content
	Slide 30: Conclusion
	Slide 31: Conclusion
	Slide 32: Conclusion
	Slide 33: Future Work
	Slide 34: Questions?
	Slide 35

