
Real-Time Ray Tracing of Micro-Poly Geometry
with Hierarchical Level of Detail

High Performance Graphics 2023

Carsten Benthin, Christoph Peters

2

Nanite: Extreme Geometric Complexity in Real-Time

Nanite A Deep Dive Siggraph 2021

https://advances.realtimerendering.com/s2021/Karis_Nanite_SIGGRAPH_Advances_2021_final.pdf

3

Nanite in a Nutshell

▪Groups triangles into geometry clusters (≤ 128 triangles)

• Lossy compression

4

Nanite in a Nutshell

▪Groups triangles into geometry clusters (≤ 128 triangles)

• Lossy compression

▪ Cluster-based hierarchical LOD

• Merge and split ➔ DAG (Directed-Acyclic-Graph)

5

Nanite in a Nutshell

▪ Rendering clusters

• Select LOD clusters by (view dependent) cut through DAG

• Reduce #clusters in subset by frustum + occlusion culling

• Decompress and (SW-)rasterize triangles in remaining clusters

• ~20M triangles/frame

6

Issue

▪ Cluster-based hierarchical LOD + HW-accelerated ray tracing?

• TLAS/BLAS API restriction

7

Issue

▪ Cluster-based hierarchical LOD + HW-accelerated ray tracing?

• TLAS/BLAS API restriction

▪OPTION 1: No per-frame LOD, put fixed geometry resolution into BLAS

• GPU memory vs. BLAS memory footprint (less dense per triangle than cluster)

• Scene updates

• Geometry aliasing

8

Issue

▪ Cluster-based hierarchical LOD + HW-accelerated ray tracing?

• TLAS/BLAS API restriction

▪OPTION 2: Apply LOD per frame, put decompressed triangles into BLAS

• Mesh topology changes➔ full BVH rebuild

• BVH rebuild perf too slow, e.g. 400 MTriangles/s for 20M triangles ➔ 50ms 

9

Issue

▪ Cluster-based hierarchical LOD + HW-accelerated ray tracing?

• TLAS/BLAS API restriction

▪OPTION 2: Apply LOD per frame, put decompressed triangles into BLAS

• Mesh topology changes➔ full BVH rebuild

• BVH rebuild perf too slow, e.g. 400 MTriangles/s for 20M triangles ➔ 50ms 

Our approach addresses this

10

Our Approach

▪ Preprocessing phase (CPU)

▪ Per-frame phase (GPU)

11

Preprocessing Phase (CPU)

▪ Initial cluster generation

▪ Creating a hierarchy over clusters

▪ Lossy compression of cluster data

Quite similar to Nanite but more
tailored towards ray tracing

12

Cluster Generation

▪ Convert triangles into quads (triangle pairs)

▪ Build BVH over all quads

▪ Extract clusters by top-down traversal

• Subtree has ≤ 128 quads (256 triangles)

• Reduces cluster’s AABB overlap

13

Cluster Hierarchy

▪ SAH-based cluster merging

• Iterative bottom-up BVH builder (PLOC)

• Select pairs with minimal merged AABB area

▪ Simplify geometry in merged cluster

• Preserving boundary edges

▪Merging would create binary tree but…

14

Cluster Merges Can Fail

▪ Too many boundary edges

➔Simplification fails (#triangles after simplification too high)

➔Split merged cluster

➔Binary DAG

▪ DAG can have multiple roots

15

Lossy Compression of Cluster Data

▪ Cluster contains a lossy compressed quad mesh

• 16bit vertex quantization with respect to object’s bounding box

• 8 bit vertex indices

▪ 4-6 bytes per triangle

▪ 165-222 MTriangles / GB of memory

▪Watertight within objects but not across

16

Per-Frame Phase (GPU)

▪ LOD cluster selection

▪ Cluster decompression and per cluster BVH build

▪ Cluster BVH fusing

17

LOD Cluster Selection

▪ DAG top-down traversal starting from roots

▪ For each traversal step

• Project cluster’s AABB on image plane

• Stop and select cluster if diagonal projection’s 2D AABB < threshold

▪ Clusters outside view frustum

• Cannot cull, need them for secondary rays

• Assigned coarse LOD level

18

Cluster Decompression and Per Cluster BVH Build

▪ Target ray tracing HW (Intel Arc Series)

• 6-wide quantized BVH = QBVH6 (64 bytes), quad/triangle-pair per leaf (64 bytes)

▪QBVH6 is ~5x larger than lossy compressed cluster

19

Cluster Decompression and Per Cluster BVH Build

▪ Decompresses cluster (≤ 128 quads) and directly convert into a QBVH6

• Load cluster ➔ decompress into SLM ➔ convert to QBVH6 ➔ write out to memory

• Omits unnecessary and memory bandwidth heavy intermediate steps

20

Cluster BVH Fusing

21

Cluster BVH Fusing

▪ Simply build top-level QBVH6 over selected cluster QBVH6s

• Result is single QBVH6 (BLAS)

▪ Full build makes adding/removing new clusters trivial (e.g. streaming)

22

Results

▪ Intel Arc A770, 16 GB memory

▪Modified Embree 4.0

• Bypasses DXR/Vulkan API restrictions, e.g. compressed clusters as geometry type

• Ray queries

23

Tessellation/Cluster

24

LOD

25

Path Tracing + Denoising

26

Per Frame Cost

Thai Rungholt Landscape

Triangles 200 M 100 M 132 M

Triangles Per Frame 16 M 40 M 21 M

LOD Selection 1.7 ms 0.9 ms 1.2 ms

Decomp + Cluster QBVH6 2.4 ms 5.9 ms 2.6 ms

Fusing Cluster QBVH6s 1.6 ms 2.3 ms 2.0 ms

Total 5.7 ms 9.0 ms 5.8 ms

QBVH6 Build Perf 4.0 GTriangles/s 4.8 GTriangles/s 4.5 GTriangles/s

27

Per Frame Cost

Thai Rungholt Landscape

Triangles 200 M 100 M 132 M

Triangles Per Frame 16 M 40 M 21 M

LOD Selection 1.7 ms 0.9 ms 1.2 ms

Decomp + Cluster QBVH6 2.4 ms 5.9 ms 2.6 ms

Fusing Cluster QBVH6s 1.6 ms 2.3 ms 2.0 ms

Total 5.7 ms 9.0 ms 5.8 ms

QBVH6 Build Perf 4.0 GTriangles/s 4.8 GTriangles/s 4.5 GTriangles/s

28

Per Frame Cost

Thai Rungholt Landscape

Triangles 200 M 100 M 132 M

Triangles Per Frame 16 M 40 M 21 M

LOD Selection 1.7 ms 0.9 ms 1.2 ms

Decomp + Cluster QBVH6 2.4 ms 5.9 ms 2.6 ms

Fusing Cluster QBVH6s 1.6 ms 2.3 ms 2.0 ms

Total 5.7 ms 9.0 ms 5.8 ms

QBVH6 Build Perf 4.0 GTriangles/s 4.8 GTriangles/s 4.5 GTriangles/s

Build performance for QBVH6 with cluster hierarchy > 10x vs. QBVH6 over quads

29

Full Dynamic Content

30

Conclusion

▪ Cluster-based BLAS construction extremely fast

31

Conclusion

▪ Cluster-based BLAS construction extremely fast

▪Getting close to real-time hierarchical LOD with HW-accelerated RT

32

Conclusion

▪ Cluster-based BLAS construction extremely fast

▪Getting close to real-time hierarchical LOD with HW-accelerated RT

▪ Lossy compressed cluster/mesh should be a new primitive type

33

Future Work

▪Need more dense representations

• Lossy compressed clusters (delta encoding + prediction)

• HW-supported geometry representation inside the BLAS

▪Need a standardized lossy compressed cluster/mesh primitive type

• DXR/Vulkan API support

34

Questions?

Full Video

https://www.intel.com/content/www/us/en/developer/articles/technical/real-time-ray-tracing-of-micro-poly-geometry.html

35

	Slide 1: Real-Time Ray Tracing of Micro-Poly Geometry with Hierarchical Level of Detail
	Slide 2: Nanite: Extreme Geometric Complexity in Real-Time
	Slide 3: Nanite in a Nutshell
	Slide 4: Nanite in a Nutshell
	Slide 5: Nanite in a Nutshell
	Slide 6: Issue
	Slide 7: Issue
	Slide 8: Issue
	Slide 9: Issue
	Slide 10: Our Approach
	Slide 11: Preprocessing Phase (CPU)
	Slide 12: Cluster Generation
	Slide 13: Cluster Hierarchy
	Slide 14: Cluster Merges Can Fail
	Slide 15: Lossy Compression of Cluster Data
	Slide 16: Per-Frame Phase (GPU)
	Slide 17: LOD Cluster Selection
	Slide 18: Cluster Decompression and Per Cluster BVH Build
	Slide 19: Cluster Decompression and Per Cluster BVH Build
	Slide 20: Cluster BVH Fusing
	Slide 21: Cluster BVH Fusing
	Slide 22: Results
	Slide 23: Tessellation/Cluster
	Slide 24: LOD
	Slide 25: Path Tracing + Denoising
	Slide 26: Per Frame Cost
	Slide 27: Per Frame Cost
	Slide 28: Per Frame Cost
	Slide 29: Full Dynamic Content
	Slide 30: Conclusion
	Slide 31: Conclusion
	Slide 32: Conclusion
	Slide 33: Future Work
	Slide 34: Questions?
	Slide 35

