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In this supplementary document, we provide derivations to underpin the individual steps of our
algorithm. Furthermore, we prove that the variation of the sampled density is bounded.

1 GEOMETRIC QUANTITIES
The algorithms discussed in the paper compute various lengths and coordinates. In the following
paragraphs, we provide derivations for the quantities computed in non-trivial ways.

Extent of the circle ∂D along the y-axis ry . By construction, the y-axis is parallel to the plane of
the circle and thus the extent ry agrees with the radius of the circle. From Figure 1, the following
relation is apparent:

ry =
r

∥d ∥2

Extent of the circle ∂D along the x-axis rx . The direction towards the sphere centerωd ∈ S2 is
the unit normal vector of the plane of the circle ∂D. The cosine of its angle with the z-axis is zTωd .
This cosine is proportional to the area of the projection of the circle to the xy-plane, which is in
turn proportional to its extent along the x-axis. The sign of the cosine becomes negative if and only
if the center is below the horizon. For a cosine of one, the projection is still a circle and rx = ry .
Therefore,

rx = (zTωd )ry .

Extent of the circle ∂D along the z-axis rz . By the same argument as for rx , we have

rz = (xTωd )ry .
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Fig. 1. The radius of the sphere r and the distance to the sphere center ∥d ∥2 are opposite and hypothenuse
of a right triangle. The radius ry of the circle ∂D is the opposite of a right triangle with hypothenuse one and
the same opening angle.

Center c = (cx , 0, cz ) of the circle ∂D . The local coordinates (cx , ry , cz )T must describe a point on
the circle ∂D, which is a subset of the unit sphere. Thus

c2x + r
2
y + c

2
z = 1 ⇒ c2x + c

2
z = 1 − r 2y . (1)

Since c andωd describe two points on a common line through the origin (but in different coordinate
systems), we know

cz
cx
=

zTωd

xTωd
⇒ cz =

zTωd

xTωd
cx .

Substituting this result into Equation (1) we find:
c2x + c

2
z = 1 − r 2y

⇒

(
1 + (zTωd )

2

(xTωd )
2

)
c2x = 1 − r 2y

⇒
(xTωd )

2 + (yTωd )
2 + (zTωd )

2

(xTωd )
2 c2x = 1 − r 2y

⇒ c2x = (xTωd )
2(1 − r 2y )

⇒ cx = (xTωd )

√
1 − r 2y

The derivation for cz is analogue. Note that the sign of cz agrees with the sign of zTωd .

The tangent point t = (tx , ty , 0)T. The tangent point lies on the horizon, so t2x + t2y = 1. It also lies
on the circle ∂D, i.e.

r 2y = (tx − cx )
2 + t2y + c

2
z = (tx − cx )

2 + 1 − t2x + c
2
z = −2txcx + c2x + 1 + c2z . (2)

The normalization factor u turns out to be closely related to xTωd :
1
u2
= ∥ωd − zTωdz∥

2
2 = 1 − 2zTωdω

T
dz + (z

Tωd )
2∥z∥22 = 1 − (zTωd )

2 = (xTωd )
2

We could have computed u = 1
x Tωd

on the spot but reusing the readily available normalization
factor is more efficient. Now if we substitute the formula for tx from the Algorithm into Equation (2),
we find that it solves it:

−2uvcx + c2x + 1 + c2z = −2(1 − r 2y ) + c
2
x + 1 + c2z = 2r 2y − (1 − c2x − c2z ) = 2r 2y − r 2y = r

2
y

Proc. ACM Comput. Graph. Interact. Tech., Vol. 2, No. 1, Article 1. Publication date: May 2019.



Supplementary Document on Sampling Projected Spherical Caps in Real Time 1:3

The sign of tx is always positive.

The scaling along the y-axis sy . The extent of the semicircle along the y-axis at height dz is
2
√
t2y − d2z . This is also the extent for the scaled semicircle at height ωi ,z . The ellipse in the yz-plane

has the the implicit representation

ω2
i ,y

r 2y
+
(ωi ,z − cz )

2

r 2z
≤ 1.

Solving for ωi ,y , we obtain the extent of the ellipse along the y-axis at height ωi ,z :

2ry

√
1 −

(ωi ,z − cz )2

r 2z

The scaling has to be the quotient of these two widths

sy =
2ry

√
1 − (ωi ,z−cz )2

r 2z

2
√
t2y − d2z

= ry

√√√
1 − (ωi ,z−cz )2

r 2z

t2y − d2z
= ry

√
r 2z − (ωi ,z − cz )2

r 2z (t
2
y − d2z )

.

2 COMPUTING THE DENSITY
In Cases 1 and 2, the projected spherical cap is sampled uniformly and thus the density is simply
the reciprocal of the projected solid angle. In Case 3, the density depends on the random numbers.
To compute it, we have to consider the determinant of the Jacobian of the warp.

We begin by defining this warp formally. The first step is to project points from the xy-plane
onto the upper hemisphere and into the yz-plane:

φ(x,y) := (y,
√
1 − x2 − y2)T

The second step is to scale uniformly along the z-axis and non-uniformly along the y-axis. The
scaling along the y-axis is given by

sy (z) := ry

√√√√
r 2z −

(
cz+rz
ty

z − cz
)2

r 2z (t
2
y − z2)

.

The overall scaling is

ψ (y, z) :=
(
sy (z)y,

cz + rz
ty

z

)T
.

Finally, φ−1 maps points back to the xy-plane. The overall warping transform is θ := φ−1 ◦ψ ◦ φ.
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To compute the Jacobian determinant of the entire warp, we first compute the determinant for
each step.

det Jφ (x,y) = det
(

∂
∂xy

∂
∂yy

∂
∂x

√
1 − x2 − y2 ∂

∂y

√
1 − x2 − y2

)
= −
∂

∂x

√
1 − x2 − y2 = 2x 12

1√
1 − x2 − y2

=
x√

1 − x2 − y2

det Jψ (y, z) = det
(

∂
∂y sy (z)y

∂
∂z sy (z)y

∂
∂y

cz+rz
ty

z ∂
∂z

cz+rz
ty

z

)
= det

(
sy (z)

∂
∂z sy (z)y

0 cz+rz
ty

)
=
cz + rz
ty

sy (z)

det Jφ−1 (y, z) =
1

det Jφ (φ−1(y, z))

In accordance with the algorithm, we adopt the notions

dx ,dy ∈ R, dz :=
√
1 − d2x − d2y , (ωi ,x ,ωi ,y )

T := θ (dx ,dy ), ωi ,z :=
√
1 − ω2

i ,x − ω2
i ,y .

This allows us to rewrite the determinant of the Jacobian of the warp:

det Jθ (dx ,dy ) =
1

det Jφ (ωi ,x ,ωi ,y )
det Jψ (dy ,dz ) det Jφ (dx ,dy )

=
ωi ,z

ωi ,x

cz + rz
ty

sy (dz )
dx
dz
=
cz + rz
ty

ωi ,z

dz

dxsy (dz )

ωi ,x

=
(cz + rz )

2

t2y

dxsy (dz )

ωi ,x

To obtain the final density, we have to divide the density in the unwarped cut disk by the absolute
value of the Jacobian determinant. The Jacobian determinant is always negative because dx < 0.
Thus, we arrive at the formula used in the algorithm:

p(ξ0, ξ1) =
1
AD

1
− det Jθ (dx ,dy )

= −
t2y

(cz + rz )2AD

ωi ,x

dxsy (dz )

3 BOUNDING THE VARIATION OF THE DENSITY
In the paper we claim that for a fixed spherical cap in Case 3, the density obeys the following
bound:

maxξ0,ξ1∈[0,1] p(ξ0, ξ1)
minξ0,ξ1∈[0,1] p(ξ0, ξ1)

≤
cx − rx

tx

√
tx − (cx + rx )

−rx

To prove this statement, we first observe that the random numbers parameterize the cut disk

K := {(x,y)T ∈ R2 | x2 + y2 ≤ 1 ∧ x ≤ −tx }.

Furthermore, we can drop all factors that only depend on the spherical cap because they cancel out
in the quotient. Therefore, what we are actually interested in is the function

θx (x,y)

−xsy (
√
1 − x2 − y2)

for x,y ∈ K where θx (x,y) denotes the x-component of θ (x,y) ∈ R2.
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3.1 Bounding the Scaling Along the y-axis sy
As a first step, we compute bounds on sy (z) for z ∈ [0, ty ). It helps to simplify the expression for
sy (z) as follows:

t2yr
2
z

r 2y
s2y (z) = t2yr

2
z

r 2z −
(
cz+rz
ty

z − cz
)2

r 2z (t
2
y − z2)

=
t2yr

2
z − ((cz + rz )z − tycz )

2

t2y − z2

=
t2yr

2
z − (cz + rz )

2z2 + 2(cz + rz )tyczz − t2yc
2
z

t2y − z2

= (cz + rz )
t2y (rz − cz ) − (cz + rz )z

2 + 2tyczz
t2y − z2

Now we prove lower and upper bounds:

t2yr
2
z

r 2y
s2y (z) − (cz + rz )rz = (cz + rz )

t2y (rz − cz ) − (cz + rz )z
2 + 2tyczz − rz (t

2
y − z2)

t2y − z2

= (cz + rz )
−t2ycz − czz

2 + 2tyczz
t2y − z2

= −cz (cz + rz )
t2y − 2tyz + z2

t2y − z2

= −cz (cz + rz )
(ty − z)2

t2y − z2
≥ 0 (3)

t2yr
2
z

r 2y
s2y (z) − (r 2z − c2z ) = (cz + rz )

t2y (rz − cz ) − (cz + rz )z
2 + 2tyczz − (rz − cz )(t

2
y − z2)

t2y − z2

= (cz + rz )
−2czz2 + 2tyczz

t2y − z2
= −2cz (cz + rz )z

z − ty

t2y − z2
≤ 0

We further simplify the upper bound by utilizing the geometric relations from Section 1:

r 2y

t2yr
2
z
(r 2z − c2z ) =

1
t2y (xTωd )

2 ((x
Tωd )

2r 2y − (zTωd )
2(1 − r 2y ))

=
r 2y − (zTωd )

2

(1 − t2x )(xTωd )
2 =

r 2y − (zTωd )
2

(xTωd )
2 − (1 − r 2y )

= 1

This simplification also carries over to the lower bound:

r 2y

t2yr
2
z
(cz + rz )rz =

r 2y

t2yr
2
z
(r 2z − c2z )

rz
rz − cz

=
rz

rz − cz

Hence, we have proven √
rz

rz − cz
≤ sy (z) ≤ 1.

3.2 Bounding theQuotient of x-Coordinates
Since (tx , ty , 0)T and (cx −rx , 0, cz +rz )T have unit length, we can bound the scaling along the z-axis:

(cz + rz )
2

t2y
=

1 − (cx − rx )
2

1 − t2x
≤

1 − (cx − rx )
2

1 − (cx − rx )2
= 1
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Combined with the bound sy ≤ 1, this leads to a lower bound for θx (x,y):

θ 2x (x,y) = 1 − ∥ψ (y,
√
1 − x2 − y2)∥22

= 1 − s2y (
√
1 − x2 − y2)y2 −

(cz + rz )
2

t2y
(1 − x2 − y2)

≥ 1 − y2 − (1 − x2 − y2) = x2

To also bound θx (x,y) from above, we reorganize terms:

θ 2x (x,y) = 1 − s2y (
√
1 − x2 − y2)y2 −

(cz + rz )
2

t2y
(1 − x2 − y2)

= 1 − (cz + rz )
2

t2y
+
(cz + rz )

2

t2y
x2 −

(
s2y (

√
1 − x2 − y2) −

(cz + rz )
2

t2y

)
y2

Using the lower bound on sy from Equation (3):

s2y (
√
1 − x2 − y2) −

(cz + rz )
2

t2y
≥

r 2y

t2yr
2
z
(cz + rz )rz −

(cz + rz )
2

t2y
= (cz + rz )

r 2y − (cz + rz )rz

t2yrz

≥ (cz + rz )
r 2y − r 2z

t2yrz
≥ 0

Hence, θ 2x (x,y) is monotonically decreasing with y2 and therefore:

θ 2x (x,y) ≤ 1 − (cz + rz )
2

t2y
+
(cz + rz )

2

t2y
x2 =

t2y − (cz + rz )
2

t2y
+
(cz + rz )

2

t2y
x2

With that, we are ready to compute an upper bound for θx (x ,y)
−x :

θ 2x (x,y)

x2
≤

t2y − (cz + rz )
2

x2t2y
+
(cz + rz )

2

t2y
≤

t2y − (cz + rz )
2

t2x t
2
y

+
(cz + rz )

2

t2y

=
t2y − (1 − t2x )(cz + rz )

2

t2x t
2
y

=
1 − (cz + rz )

2

t2x
=

1 − (cz + rz )
2

1 − t2y
=

(cx − rx )
2

t2x

In summary, we have shown

1 ≤
θx (x,y)

−x
≤

cx − rx
tx

.

3.3 Deriving the Bound

Now we combine the bounds for sy and θx (x ,y)
−x :

1 ≤
θx (x,y)

−xsy (
√
1 − x2 − y2)

≤
θx (x,y)

−x

√
rz − cz
rz

≤
cx − rx

tx

√
rz − cz
rz

Finally, wewant to express this bound solely in terms of x-coordinates. The points (cx−rx , 0, cz+rz )T,
(tx , 0, 0)T and (cx + rx , 0, cz − rz )

T all lie in the plane of the circle ∂D. Therefore, they also lie on a
common line in the xz-plane, i.e.

−2rx
2rz

=
tx − (cx + rx )

0 − (cz − rz )
⇒

rz − cz
rz

=
tx − (cx + rx )

−rx
.
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Rewriting the upper bound in this manner, we conclude

maxξ0,ξ1∈[0,1] p(ξ0, ξ1)
minξ0,ξ1∈[0,1] p(ξ0, ξ1)

≤
cx − rx

tx

√
tx − (cx + rx )

−rx
. (4)

3.4 Analyzing the Bound
It is easy to evaluate the bound in Equation (4) for any given spherical cap but we would prefer
general guarantees on the quality of our samples. Thus, we seek a more conservative upper bound
that only depends on the radius ry of the spherical cap D. This radius is directly related to the
distance to the center of the light source through ry = r

∥d ∥2
. Hence, it characterizes a sphere around

the light source.
We could continue to derive bounds analytically but there is a much simpler way. Through the

computations above, we have obtained bounds that are independent of the random numbers ξ0, ξ1.
The set of spherical caps modulo rotation around the surface normal n is only two-dimensional.
We can effortlessly consider the set of all spherical caps by sampling it densely and computing the
bound.
The formulation of the bound even suggests a specific way to do this. It only depends on

cx − rx , cx + rx and tx and one of the three quantities is redundant. As explained in Section 3.3,
(cx − rx , cz + rz )

T, (tx , 0)T and (cx + rx , cz − rz )
T lie on a common line. Besides two of these points

lie on the unit circle, i.e.
cz + rz =

√
1 − (cx − rx )2, cz − rz = −

√
1 − (cx + rx )2.

By computing the intersection of the line through (cx − rx , cz + rz )
T and (cx + rx , cz − rz )

T with the
x-axis, we obtain tx .

Furthermore, we know
− 1 < cx + rx < tx < cx − rx < 1 and 0 < tx . (5)

Therefore, we sample cx + rx uniformly in [−1, 1] and cx − rx uniformly in [0, 1] using 32,768
samples for each. Then we construct a two-dimensional grid, compute tx and discard samples
where one of the Inequalities (5) is violated. For each sample, we also compute

ry =

√
r 2x + r

2
z .

For any given threshold on ry , we consider all samples where ry is below the threshold and determine
the maximal value of the bound in Equation (4). By doing this for a dense sampling of thresholds,
we obtain the sought-after conservative bound, which is shown in Figure 2.

We note that there is a crease in the graph at 1
ry
= 2. From this point onward, the upper bound

is constant at
√
2. This is the case because spherical caps, no matter how small, always realize a

quotient of
√
2 in their densities as they vanish below the horizon:

lim
cx→1+rx

cx − rx
tx

√
tx − (cx + rx )

−rx
=

1
1

√
1 − (1 + 2rx )

−rx
=
√
2

The bound goes to infinity as 1
ry

→ 1, i.e. for shading points on the surface of the light source.
However, it drops off quickly from there. For example, for 1

ry
≥ 1.094 the bound is below two.
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Fig. 2. A variant of the upper bound in Equation (4) that only depends on ry . All three plots show the same
graph with different limits for the x- and y-axis. The x-axis corresponds to 1

ry which is an intuitive quantity

as it is proportional to the distance to the light source center. For 1
ry = 1, the shading point is on the surface

of the spherical light source, for 1
ry = 2 its distance to the light source surface matches the radius of the

spherical light source.
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