Fast Transient Imaging
A Python framework revolving around reconstruction of impulse responses from AMCW lidar measurements.
|
#include "LevinsonAlgorithm.fx"
Macros | |
#define | MOMENT_COUNT 1 |
#define | MOMENT_COUNT 2 |
#define | MOMENT_COUNT 3 |
#define | MOMENT_COUNT 4 |
#define | MOMENT_COUNT 5 |
#define | MOMENT_COUNT 6 |
#define | MOMENT_COUNT 7 |
#define | MOMENT_COUNT 8 |
Functions | |
float | GetMaximumEntropySpectralEstimate (float2 pTrigonometricMoment[MOMENT_COUNT+1], float Point) |
This header defines functions for reconstructing distributions with minimal Burg entropy matching given trigonometric moments. This is known as maximum entropy spectral estimate.
#define MOMENT_COUNT 1 |
#define MOMENT_COUNT 2 |
#define MOMENT_COUNT 3 |
#define MOMENT_COUNT 4 |
#define MOMENT_COUNT 5 |
#define MOMENT_COUNT 6 |
#define MOMENT_COUNT 7 |
#define MOMENT_COUNT 8 |
float GetMaximumEntropySpectralEstimate | ( | float2 | pTrigonometricMoment[MOMENT_COUNT+1], |
float | Point | ||
) |
This function computes and returns the density at the given point of interest (in radians) for the distribution with minimal Burg entropy matching the given trigonometric moments. This is known as maximum entropy spectral estimate.